首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2306篇
  免费   262篇
  国内免费   322篇
测绘学   95篇
大气科学   232篇
地球物理   295篇
地质学   432篇
海洋学   664篇
天文学   12篇
综合类   142篇
自然地理   1018篇
  2024年   4篇
  2023年   30篇
  2022年   91篇
  2021年   135篇
  2020年   104篇
  2019年   102篇
  2018年   98篇
  2017年   93篇
  2016年   115篇
  2015年   112篇
  2014年   137篇
  2013年   124篇
  2012年   121篇
  2011年   137篇
  2010年   109篇
  2009年   146篇
  2008年   108篇
  2007年   131篇
  2006年   129篇
  2005年   154篇
  2004年   94篇
  2003年   97篇
  2002年   66篇
  2001年   74篇
  2000年   77篇
  1999年   54篇
  1998年   44篇
  1997年   45篇
  1996年   27篇
  1995年   25篇
  1994年   20篇
  1993年   21篇
  1992年   13篇
  1991年   13篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1971年   1篇
排序方式: 共有2890条查询结果,搜索用时 31 毫秒
81.
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesize that less disturbed peatlands are ‘near equilibrium’ with respect to the second law of thermodynamics and thus respond to change by minimizing entropy production. This ‘near equilibrium’ state is best achieved by limiting evaporative losses. Alternatively, peatlands ‘far-from-equilibrium’ respond to a change in energy inputs by maximizing entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: (i) The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. (ii) Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be ‘near equilibrium’ rather than ‘far from equilibrium’.  相似文献   
82.
Understanding the isotopic composition of precipitation in a forested catchment is critical for ecohydrological studies. Changes in the water isotopes of rainfall were assessed during its passage through the canopy in throughfall, and the effect of different forest stands on the isotope composition of throughfall. In a cool temperate forest in Korea, rainfall and throughfall samples collected under Pinus densiflora (red pine), Castanea crenata (chestnut), Robinia pseudoacacia (black locust) and mixed stands (mix of these three species) were analysed for oxygen and hydrogen isotopes. Throughfall δ18O and δD were enriched compared to rainfall. A difference of δ18O and δD among throughfall may be related to the difference in interception–storage capacity of different species due to dissimilar canopy characteristics. Since isotopic composition of throughfall and rainfall are different due to canopy isotopic effects, use of rainfall isotopic signatures for ecohydrological studies in forested ecosystem can lead to biases.  相似文献   
83.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
84.
A comparative account of primary productivity (PP), in the characteristically turbid and highly dynamic waters of Ariake Bay, measured by 13C uptake and fast repetition rate fluorometer (FRRF) was conducted to ensure compatibility between the two methods. Estimates from both methods depicted strong linearity for both short-term (r2 > 0.90) and daily (r2 = 0.42–0.93) measurements, except in the near-surface (∼0 m) layer. 13C-based short-term (1 h; in situ) PP estimates showed similar magnitudes and trend with the instantaneous PP measured by FRRF concurrently. Whereas, unlike short-term measurements, the daily PP estimates from both methods showed large difference, with FRRF-based time integrated daily PP resulting in 1.09–1.82 times higher than the carbon-based daily (24 h; simulated in situ) PP. This difference between daily PP estimates was mainly due to: (1) the temporal variation of water column chlorophyll a (Chl a) because of frequent moving of water mass, and (2) the dissimilarity in ambient light field conditions between the two methods. Results revealed that considering the above two environmental factors invariable over a daylength, fairly close approximation of daily PP, compared to 13C-based daily PP, could be obtained from FRRF. Hence, FRRF-based daily PP can be considered as more realistic in this highly dynamic water body like Ariake Bay where water column parameters are subjected to strong temporal variation. The relationship between Chl a-specific photosynthetic rate (PB) and the corresponding photosynthetically active radiation (PAR) in the water column (PAR–PB relationship) was found to be linear for FRRF and curvilinear for 13C-based measurements in the near-surface layer, for the same intensities of incident PAR, and this is thought to be the primary basis for the higher difference in PP estimates at the near-surface layer. Considering the minor variations in FRRF-based time series of PAR–PB relationships, a combined and/or instantaneous PAR–PB relationship in combination with incubation Chl a and light field condition was used to obtain fairly close estimates of daily water column integrated PP from FRRF.  相似文献   
85.
Biological structures exert a major influence on species diversity at both local and regional scales on deep continental margins. Some organisms use other species as substrates for attachment, shelter, feeding or parasitism, but there may also be mutual benefits from the association. Here, we highlight the structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms. The environmental setting of the biological structures influences their species composition. The importance of benthic species as substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the degree of mutualistic relationships between habitat-forming taxa. This is especially evident for scleractinian corals, which have high numbers of facultative associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates. Size, flexibility and architectural complexity of the habitat-forming organism are positively related to species diversity for both sessile and mobile species. This is mainly evident for commensal species sharing a facultative relationship with their host. Habitat complexity is enhanced by the architecture of biological structures, as well as by biological interactions. Colony morphology has a great influence on feeding efficiency for suspension feeders. Suspension feeding, habitat-forming organisms modify the environment to optimize their food uptake. This environmental advantage is also passed on to associated filter-feeding species. These effects are poorly understood but represent key points for understanding ecosystems and biodiversity on continental margins. In this paper we explore the contributions of organisms and the biotic structures they create (rather than physical modifications) to habitat heterogeneity and diversity on the deep continental margins.  相似文献   
86.
Ecosystem based management takes into account the interconnectedness and interdependent nature of ecosystem components and emphasizes the importance of ecosystem structures and functions which provide a range of services. The concept has now been adopted by many international agreements and national governments and is in the process of being implemented. This paper seeks to review the literature and to analyze the understanding of the subject. The term is defined and its implementation in fisheries and for all marine uses is analyzed. It has been concluded that to understand marine ecosystem based management one must consider ecosystems as complex adaptive systems which can show changes at higher levels from actions and processes occurring at lower levels. Recognizing that humans are part of these complex adaptive systems is vital in that their actions along with other processes can lead to transformations in ecosystem functioning. This recognition is also important to show how society can sustainably exploit these resources and that the inclusion of all stakeholders in the management process is necessary to legitimize the process. The uses of the precautionary principle along with adaptive management are seen to be useful tools in implementing these insights into the management of natural resources. Finally, the need for reducing consumption of fish is considered.  相似文献   
87.
88.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
89.
90.
This article investigates whether the European Union-Mauritania fisheries agreement, which allocates part of the Europe's financial contribution to the conservation of marine ecosystems located within the Banc d’Arguin National Park, can be regarded as a payment for ecosystem service. A framework for qualification as such payment scheme was established based on an extensive literature review. The criteria identified for the qualification as a payment to ecosystem service pertain to: (1) the definition of the ecosystem service(s) involved; (2) the mechanism involved by the payment; and (3) the nature of the transaction. Interviews with local beneficiaries and subsequent data analysis led to the conclusion that this mechanism could be regarded as a payment to ecosystem service and so, through the European Union-Mauritania Fisheries agreement, the European Union were investing to protect local fish resources that could be exploited by its fishing fleet. This agreement, involving the first International Payment to Ecosystem Service of this kind, marks an important step towards better consideration of marine conservation in international public policy and foreign fishing policy in particular. However, this payment is small when compared to revenues generated through the exploitation of developing countries’ fishing grounds by fishing countries. Nevertheless it opens the door for more detailed applications of payment to ecosystem service schemes to other ecosystems contexts, and can provide a useful alternative source of financing of marine biodiversity conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号